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Introduction
At the beginning of 2018, the China National Center for Cardiovascular Diseases 
issued the Report on Cardiovascular Diseases in China 2017 (summary). The esti-
mated number of cardiovascular disease patients in China was 290 million, and car-
diovascular deaths accounted for more than 40% of all deaths, ranking first in all 
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intervention for acute MI can significantly reduce mortality. The traditional MI risk 
assessment models are subjective, and the data that go into them are difficult to 
obtain. Generally, the assessment is only conducted among high-risk patient groups.

Objective:  To construct an artificial intelligence–based risk prediction model of 
myocardial infarction (MI) for continuous and active monitoring of inpatients, especially 
those in noncardiovascular departments, and early warning of MI.

Methods:  The imbalanced data contain 59 features, which were constructed into 
a specific dataset through proportional division, upsampling, downsampling, easy 
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accuracy of the 24-feature downsampling GBDT model were both 0.83, and the area 
under the curve was 0.91.
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occurrence of in-hospital MI from a data-driven perspective, thereby increasing the 
cure rate of patients and improving their prognosis.
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diseases and even higher than cancer. Cardiovascular diseases, including myocardial 
infarction (MI), can cause a decline in quality of life, economic difficulties, and even 
death [1]. One of the most lethal cardiovascular diseases, MI, is caused by unstable 
plaque rupture, erosion, and calcification nodules on the basis of coronary heart dis-
ease, leading to platelet aggregation and thrombosis and myocardial necrosis due to 
acute coronary occlusion or blocked blood flow. MI can lead to malignant arrhyth-
mia, heart failure, and sudden death. Clinical studies have shown that early identifi-
cation of and timely intervention for acute MI can significantly reduce mortality [2]. 
Many MI patients have a poor prognosis and even die because of weak symptoms and 
rapid progression.

Early coronary artery reperfusion therapy is the preferred treatment for patients with 
MI. The likelihood of a benefit from reperfusion therapy is negatively correlated with 
time [3]. Rapid identification and rescue are the keys to the success of MI treatment. 
Thanks to the increasing acceptance of early coronary reperfusion therapy, the acute and 
long-term mortality of MI has declined to some extent, but its mortality remains high. 
The major reason is the inability to recognize MI early, especially by noncardiovascular 
physicians, which delays the first medical contact and door-to-balloon time and results 
in poor prognosis.

The traditional MI risk assessment models are subjective, and the data that go into 
them are difficult to obtain. Generally, the assessment is only conducted among high-
risk patient groups. Each MI patient has different causes, symptoms, and signs, but MI 
always progresses rapidly. The various factors make it extremely difficult for noncardio-
vascular physicians and even some cardiovascular physicians to accurately identify the 
risk of MI or monitor the risk of MI over a long time. Thus, it is impossible to formu-
late diagnosis and treatment plans and coordinate medical resources in advance. The MI 
diagnostic window for noncardiovascular physicians is longer than that for cardiovas-
cular physicians [4], so it would be of practical significance to develop a new model that 
can achieve automatic identification, long-term monitoring, and timely warning of the 
risk of MI in each patient.

With the rapid development of computer technology and information technology, the 
informatization of the healthcare field has accelerated, and hospital information systems 
(HISs) are increasingly adopted. An HIS is a computer system for healthcare to solve 
problems such as medical services, patient safety, and clinical diagnosis and treatment 
[5, 6]. Massive amounts of data are generated by the use of an HIS system, which pro-
vides a large amount of data for real-world research.

Artificial intelligence (AI) is a technology of high research interest that can be applied 
to clinical diagnosis [7, 8]. Wallert et al. [9] used four popular machine learning algo-
rithms to mine the data of 51,943 cases of new-onset MI and established a prediction 
model for 2-year survival after the initial onset of MI. Mansoor et al. [10] constructed an 
in-hospital mortality prediction model for ST-segment elevation MI in females by logis-
tic regression (LR) and a random forest (RF) algorithm, and the area under the curve of 
the model reached 0.81. Researchers from the West China Hospital of Sichuan Univer-
sity proposed a hybrid feature selection method for the recommendation of antihyper-
tensive drugs and combined this method with statistical analysis to screen out the key 
factors affecting the efficacy of antihypertensive drugs [11].
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The present study aimed to develop an AI-based MI risk prediction model through 
machine learning applied to MI big data. We wanted a model that could be used to con-
tinuously and actively monitor all inpatients, especially noncardiovascular inpatients, 
thereby achieving early screening and real-time warning of MI. The model we developed 
can contribute to the integration, standardization, and coordination of the diagnosis and 
treatment process of patients at high risk for MI, reduce the occurrence of in-hospital 
MI through a data-driven approach, and improve the cure rate and prognosis of patients.

Methods
Data organization rules

The West China Hospital of Sichuan University is a large, comprehensive hospital with 
medical teaching and research capabilities. After receiving ethical approval, we collected 
data from all hospitalized patients in the West China Hospital of Sichuan University for 
a total of 10 years from 1 January 2011 to 31 December 2020. The inclusion criterion 
for the MI group was that the first page of the patient’s medical record contained the 
keyword “myocardial infarction”. All MI patients were included in the MI group, and 
all non-MI patients were included in the control group. The patient data included basic 
patient information, electronic medical records, and laboratory test results. The basic 
information included admission ID number, sex, and age. The electronic medical record 
information included treatment department, discharge diagnosis, admission time, and 
discharge time. The laboratory test information included a total of 1357 laboratory test 
indices, such as sodium, potassium, chlorine, creatine kinase isoenzyme MB, myoglobin, 
creatinine, carbon dioxide binding capacity, serum β-hydroxybutyric acid, troponin-I, 
and troponin-T. If a patient was tested for the same laboratory test multiple times, the 
results of the first test were taken since the characteristics of MI patients at admission 
are the most obvious. Then, the basic information and electronic medical record infor-
mation were combined into a complete dataset identified by the admission ID number.

Data cleaning

According to the inclusion criteria, 20,072 patients were initially included in the MI 
group and 1,882,996 in the control group. The treatment of missing information was a 
key factor in the overall data quality [12]. Hence, we attempted to ensure the least miss-
ing information while including the most patient features. Specifically, 57 laboratory 
indices were selected as the features, and age and sex were taken as complimentary fea-
tures, resulting in a total of 59 features. The data were preprocessed via normalization, 
null value deletion, nonstandard value correction, and unit conversion. Finally, the MI 
group included a total of 14,446 patients. The control group initially included 1,882,996 
patients, which after data cleaning fell to 220,369. The feature values of all MI-positive 
and MI-negative patients were intact. The basic features of the MI group and control 
group are given in Table 1.

Machine learning model

Machine learning is a branch of AI. In machine learning, mathematical optimization 
is very important, including numerical calculation of system parameters [13]. This 
study adopted procedure-oriented programming through Python 3.6 and took target 
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determination, problem diagnosis, program design, program execution, and evalu-
ation iteration as machine learning training strategies. The computer CPU was an 
Intel Core i7-10870H 2.2GHZ, and the memory was 32 GB. Since MI risk prediction 
is a labelled classification problem, an MI prediction model was constructed through 
supervised machine learning in this study [14]. Due to the use of big data, the com-
monly existing problem of data imbalance needs to be addressed [15]. Therefore, 
the model needs to be evaluated from multiple aspects. Generally, machine learning 
model training is optimized by modifying the algorithm and the iteration of hyper-
parameters. However, considering the imbalance between the positive and negative 
samples in this study, the dataset construction was incorporated as a key adjustment 
in the model optimization.

First, 1000 MI patients and 1000 control patients were randomly selected from the 
original dataset to verify the predictive ability and generalization ability of the model. 
Five datasets were constructed from the remaining data using five dataset construction 
methods, namely, proportional division, upsampling, downsampling, easy ensemble, 
and w-easy ensemble. The data in each dataset were randomly divided into a training set 
and a validation set at a ratio of 8:2. Finally, supervised learning was applied to train the 
model on each training set. Specifically, recursive feature elimination (RFE) was used as 
the top-layer algorithm, and RF, gradient boosting decision tree (GBDT), LR, and sup-
port vector machine were used as the bottom-layer algorithms. As an index to meas-
ure the accuracy of the binary classification model in machine learning, the F1 score 
takes into account the precision and recall of the classification model. Compared with 
the accuracy, the F1 score can better reflect the real predictive ability of the model more 
objectively and accurately [16]. Thus, the F1 score was used to evaluate the five models 
to determine the best model for MI risk prediction. The machine learning model build-
ing flow chart is shown in Fig. 1.

RFE

An RFE model identifies the most or least important feature, removes it from the feature 
set, and then repeats this on the remaining feature set until all features are traversed 
[17]. Finally, the feature ranking and the best feature subset are obtained to complete 
the modelling. The stability of RFE depends on the bottom-layer algorithm. If the 

Table 1  Basic features of patients with and without MI

Feature With MI (n = 14,446) Without MI (n = 220,369)

Mean age (yrs) 65.9 ± 13.4 62.4 ± 16.8

Male, n (%) 11,406 (79) 131,220 (60)

Troponin-T (ng/L) 327.9 (23.4–2463.5) 12.3 (7.4–25.2)

Urodilatin (pg/ml) 1138 (348–3693.5) 242 (79–1057)

Myoglobin (ng/ml) 52.9 (29.3–183.9) 32.9 (21–64.7)

Total cholesterol (mmol/L) 3.8 (3.1–4.6) 3.94 (3.21–4.73)

Creatine kinase Isoenzymes-MB (ng/ml) 3.9 (1.9–39.3) 1.55 (1.01–2.53)

Serum creatinine (umol/L) 85.8(71–109) 74(60–93)

Fasting plasma glucose (mmol/L) 6.73(5.5–9) 5.6(4.9–7.2)

Direct bilirubin (umol/L) 4.3(3.1–6.1) 3.9(2.7–5.8)
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bottom-layer algorithm is stable, RFE is stable, and if the bottom-layer algorithm is not 
stable, RFE is not stable [11]. Because the distribution of the data was not known, four 
bottom-layer algorithms, i.e., support vector classification (SVC), LR, RF, and GBDT, 

Fig. 1  Machine learning model building flowchart
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were selected for traversal and comparison. Since there were 59 features, the modelling 
of each algorithm was cycled 59 times to explore the best feature subset.

Proportional division

Model 1 was constructed by combining proportional division with RFE. All data were 
trained directly by proportional division, and the training set and validation set were 
divided according to the same ratio of positive to negative samples. The training set 
and validation set remained imbalanced. The training set included a total of 186,252 
patients, and the validation set included 46,563 patients. The ratio of positive to negative 
samples in the training set was the same as that in the validation set. The RFE method 
constructed 236 models on the dataset, and the model with the best performance was 
selected and denoted as Model 1.

Upsampling

Model 2 was constructed by combining upsampling with RFE. Upsampling replicates 
the positive samples to balance the number of positive and negative samples, and the 
training set and validation set both maintain data balance [18]. The training set included 
347,604 patients, and the validation set included 86,901 patients. The ratio of posi-
tive to negative samples was 1:1 in the training set and validation set. The RFE method 
constructed 236 models on the dataset, and the model with the best performance was 
selected and denoted as Model 2.

Downsampling

Model 3 was constructed by combining downsampling with RFE. In downsampling, the 
negative samples are resampled to balance the number of positive and negative sam-
ples, and the training set and validation set maintain data balance [18]. The training set 
included a total of 21,513 patients, and the validation set included 5379 patients. The 
ratio of positive to negative samples in the training set and validation set was 1:1. The 
RFE method constructed 236 models on the dataset, and the model with the best perfor-
mance was selected and denoted as Model 3.

Easy ensemble

Model 4 was constructed by combining the easy ensemble with RFE. The easy ensemble 
is based on bagging, and the final result is obtained by voting on multiple submodels 
[19]. As shown in Fig. 2, the easy ensemble trains all the data, including 185,823 cases 
in the training set and 45,993 cases in the validation set. The ratio of positive to nega-
tive samples was the same in the training set and the validation set. Unlike Model 1, 
the easy ensemble divided the negative samples of the training dataset into 15 subsets, 
each subset having the same sample number as the positive samples. Next, 15 submodels 
were constructed based on the 15 subsets. The submodel for each subset was the best 
model selected from 236 models using RFE. Then, the 15 submodels were integrated by 
traversing the voting difference, and the model with the best performance was selected 
as Model 4.
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W‑easy ensemble

Model 5 was constructed by combining the w-easy ensemble with RFE. In machine 
learning, weighted methods can be used to eliminate training biases [20]. W in the 
W-easy ensemble means weight. The W-easy ensemble adds weights to the easy ensem-
ble method and combines bagging and boosting, as shown in Fig. 2. Each submodel of 
Model 4 did not have a weight, but in fact, the predictive ability of each submodel was 
different. To highlight the contributions of the high-quality submodels and reduce vot-
ing interference by the low-quality submodels, the F1 score was used to weight each sub-
model. The voting difference was traversed, and the model with the best performance 
was selected as Model 5.

Results
Results in the validation set

Results of Models 1–3

Models 1–3 used nonensemble data construction, and the results in the validation set 
are shown in Fig. 3a–c. As the number of features increased, the F1 score of all mod-
els showed an overall upwards trend, yet there were large differences between different 
algorithms. The F1 scores of the tree-based nonlinear GBDT and RF models were signif-
icantly higher than those of the linear LR and SVC models. GBDT and RF needed fewer 
features than LR and SVC to reach the peak F1 score. Specifically, LR and SVC needed 
approximately 40 features to reach the peak F1 score, whereas GBDT and RF needed 
only approximately 10. In addition, the stability of GBDT and RF was significantly higher 

Fig. 2  Easy ensemble, w-easy ensemble architecture diagram
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than that of LR and SVC. As shown in Fig. 3, as the number of features increased, the F1 
score of LR changed in a stepwise fashion, and the F1 score of SVC changed in a zig-zag 
fashion. The two algorithms had large iterative differences and poor stability. Comparing 
GBDT and RF, it can be seen from the results of Model 1 and Model 3 that the F1 scores 
of GBDT were higher than those of RF in all feature combinations. Although the F1 

Fig. 3  Overall results of model one, two, and three validation sets
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score of RF in Model 2 reached 0.99, RF only fitted a specific dataset, which was consid-
ered overfitted [21]. Compared with GBDT, RF was more prone to overfitting. The best 
result of each model is given in Table 2. The downsampling GBDT model was the best 
model under the nonensemble data construction method. The training set had a positive 
sample size of 10,784 and a negative sample size of 10,729. The validation set had a posi-
tive size of 2662, a negative sample size of 2717, 24 features, and an F1 score of 0.84.

Results of Models 4–5

Ensemble learning is a method that combines various classifiers in a certain way to clas-
sify new instances [22]. Model 4 and Model 5 used ensemble data construction meth-
ods. The negative samples were divided into 15 subsets, and each subset included 14,625 
patients, the same as the number of positive samples. Fifteen RFE submodels (Model_E0 
to Model_E14) were constructed on these 15 data subsets, and the evaluation indices of 
each submodel were calculated independently, including the best algorithm, best feature 
subset, accuracy, and F1-score. As shown in Table 3, the best algorithm for each sub-
model was GBDT, consistent with the results of the nonensemble models. The best fea-
ture number of each submodel was approximately 20. The accuracy and F1-score were 
approximately 0.85, indicating strong stability.

Table 2  Optimal results of Models 1–3 on the validation set

Model 
name

Construction 
method

Optimal 
algorithm

Number 
of 
optimal 
feature

Negative 
training 
n sample

Positive 
training 
n 
sample

Negative 
validation 
sample

Positive 
validation 
sample

Validation 
accuracy

ValidationF1 
score

Model1 Proportional 
division

GBDT 9 175,496 10,756 43,873 2690 0.96 0.78

Model2 Upsampling RF 3 175,395 172,209 43,974 42,927 0.99 0.99

Model3 Downsam-
pling

GBDT 24 10,784 10,729 2662 2717 0.84 0.84

Table 3  Submodel building with ensemble data

Optimal algorithm Optimal feature Accuracy F1-score

Model_E0 GBDT 18 0.87 0.87

Model_E1 GBDT 19 0.85 0.85

Model_E2 GBDT 17 0.84 0.84

Model_E3 GBDT 20 0.85 0.85

Model_E4 GBDT 20 0.84 0.84

Model_E5 GBDT 14 0.85 0.85

Model_E6 GBDT 17 0.85 0.85

Model_E7 GBDT 17 0.85 0.85

Model_E8 GBDT 14 0.85 0.85

Model_E9 GBDT 10 0.85 0.85

Model_E10 GBDT 20 0.85 0.85

Model_E11 GBDT 21 0.87 0.87

Model_E12 GBDT 16 0.89 0.89

Model_E13 GBDT 16 0.89 0.89

Model_E14 GBDT 16 0.88 0.88
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The 15 submodels from Model_E0 to Model_E14 were integrated to build Model 4. 
Each submodel carried out prediction for the same cases, and the prediction results 
were combined to obtain the final result. Different combination rules produced dif-
ferent model results. For example, when there are more negative votes than posi-
tive votes, all predictions are negative, and when there are more positive votes than 
negative votes, the result of 1 vote difference being positive and 15 votes difference 
being positive is different. As shown in Table 4, the accuracy and F1 score gradually 
increased with the increase in the voting difference. When the voting difference was 
15, the accuracy on the validation set reached 0.95, and the F1 score was 0.78.

In Model 5, the F1 score was introduced as the weight of each submodel of Model 
4 to increase the weight of high-quality submodels and reduce the interference from 
low-quality models. The ensembling rules were the same as those of Model 4. Due to 
the introduction of weights, the range of voting differences was not [1, 15]. Accord-
ing to the actual data, voting differences from 0 to 9 were traversed (Table 4). For key 
assessment indices, the accuracy and F1 score increased synchronously with increas-
ing voting difference, while the positive precision and sensitivity changed in opposite 
directions. With the threshold of 9, the accuracy on the validation set was 0.95, and 
the F1 score was 0.78.

The best results of Model 4 and Model 5 are shown in Table 5, and the two mod-
els showed the same performance on the validation set. A total of 45 features were 
required for the 15 submodels. The number of positive samples in the training set was 
10,714, the number of negative samples in the training set was 175,109, the number of 
positive samples in the validation set was 2732, and the number of negative samples 
in the validation set was 43,261. The F1 score on the validation set reached 0.78, and 
the accuracy on the validation set reached 0.95. As in Model 1, model training and 

Table 4  Voting traversal results of Model 4 and Model 5

Vote 
difference

Accuracy F1 score Negative 
precision

Positive 
precision

Specificity Sensitivity

Model4_1 1 0.86 0.66 0.99 0.27 0.86 0.82

Model4_3 3 0.87 0.68 0.99 0.29 0.88 0.8

Model4_5 5 0.89 0.69 0.98 0.32 0.9 0.77

Model4_7 7 0.90 0.71 0.98 0.35 0.91 0.75

Model4_9 9 0.92 0.73 0.98 0.39 0.93 0.72

Model4_11 11 0.93 0.74 0.98 0.42 0.94 0.7

Model4_13 13 0.94 0.76 0.95 0.47 0.95 0.66

Model4_15 15 0.95 0.78 0.98 0.54 0.97 0.62

Model5_0 0 0.85 0.66 0.99 0.27 0.86 0.82

Model5_1 1 0.87 0.68 0.99 0.29 0.88 0.80

Model5_2 2 0.89 0.69 0.99 0.32 0.89 0.78

Model5_3 3 0.89 0.70 0.98 0.34 0.91 0.76

Model5_4 4 0.90 0.71 0.98 0.35 0.91 0.75

Model5_5 5 0.92 0.73 0.98 0.39 0.93 0.72

Model5_6 6 0.93 0.74 0.98 0.42 0.94 0.70

Model5_7 7 0.94 0.76 0.98 0.47 0.95 0.67

Model5_8 8 0.94 0.77 0.98 0.51 0.96 0.64

Model5_9 9 0.95 0.78 0.98 0.54 0.97 0.62
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validation of Models 4 and 5 were carried out on highly imbalanced datasets, and 
they performed similarly to Model 1.

Results on the test set

The test set was not used in training or validation and was mainly used to test the gen-
eralization ability and predictive ability of the model. As shown in Table 6 and Fig. 4, the 
results of different models on the test set were quite different. The accuracy, F1 score, 
positive precision, sensitivity, negative precision, and specificity of Model 3 were all 
greater than 0.8, suggesting high model stability. The area under the receiver operating 
characteristic curve reached 0.91, indicating strong generalization ability. Based on the 
practical application of the model, it was difficult to completely collect all patient fea-
tures. Thus, the number of features was reduced to 15 at the expense of 0.01 accuracy 
and the F1 score to meet real-world needs. The 15 features were key features indicating 
whether a patient had MI (Table 7). Some of these features have been clinically verified 
as key features. For example, troponin-T and creatine kinase isoenzyme-MB are sensi-
tive indices of acute MI [23, 24]. Creatinine might also have certain predictive value for 
the occurrence of cardiovascular diseases [25]. Features such as urodilatin, total choles-
terol, and monocyte percentage, which have not been clinically verified, are potential 
indices obtained through data-driven mining and can provide references for clinical 
explorations and research into MI prediction.

Discussion
With the rapid growth of big medical data, emerging technologies such as AI and 
machine learning have been increasingly applied in the medical field. [26, 27]. Due to 
the use of big data, data imbalance is a common problem. Data imbalance refers to the 
imbalance of the ratio of positive to negative samples in the actual dataset. Extreme 

Table 5  Optimal results of Models 4 and 5 on the validation set

Model 
name

Construction 
method

Optimal 
Vote 
difference

Number 
of optimal 
feature

Negative 
training n   
sample

Positive 
training n 
sample

Negative 
validation 
n sample

Positive 
validation 
n sample

Validation 
accuracy

Validation  
F1 score

Model4 Easy ensem-
ble

15 45 175,109 10,714 43,261 2732 0.95 0.78

Model5 W-easy 
ensemble

9 45 175,109 10,714 43,261 2732 0.95 0.78

Table 6  Results of all models on the test set

Accuracy F1 score Negative 
precision

Positive 
precision

Specificity Sensitivity AUC​

Model1 0.71 0.69 0.64 0.98 0.99 0.44 0.90

Model2 0.70 0.68 0.63 0.94 0.97 0.42 0.78

Model3 0.83 0.83 0.81 0.87 0.88 0.80 0.91

Model4 0.79 0.78 0.71 0.94 0.96 0.61 0.91

Model5 0.80 0.80 0.73 0.93 0.95 0.65 0.91
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Fig. 4  ROC curve and key evaluation indicators

Table 7  Key features used for MI risk prediction

Feature name Description Normal reference (unit)

TNT Troponin-T 0–14 ng/L

UD Urodilatin 0–227 pg/ml

MB Myoglobin 20–80 ng/ml

ALB Albumin 35–50 g/L

TC Total cholesterol 2.9–6 mmol/L

Cl Plasma chlorine 96–106 mmol/L

CK-MB creatine kinase isoenzymes-MB 0–4.94 ng/ml

Cr Serum creatinine 54–106 umol/L

MONO% Monocyte percent 3–8%

FPG Fasting plasma glucose 3.9–6.1 mmol/L

DBil Direct bilirubin 0–6.8 umol/L

AG Anion gap 8–16 mmol/L

IBil Indirect bilirubin 1.7–10.2 umol/L

Age

Sex
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imbalance is a characteristic feature of medical big data [28]. Out of the total popula-
tion, people with a given disease account for only a small portion. Traditional machine 
learning models are mostly trained using balanced datasets, which makes it difficult to 
directly apply imbalanced datasets. Therefore, in this study, from the perspective of dif-
ferent dataset construction methods, we constructed multiple models to deal with data 
imbalances, evaluated the differences between different models from multiple aspects, 
analysed the underlying causes of the differences, and ultimately constructed an MI risk 
prediction model for practical implementation.

In Model 1, all data were proportionally divided into the training and validation sets. 
The training data and validation data were both imbalanced, which is consistent with 
the real-world situations. Model 1 performed poorly on both the validation set and the 
test set. This was because in the training process, the optimization objective was accu-
racy. For such extremely imbalanced data, in extreme cases in which all predictions are 
negative, the accuracy can exceed 95%. Therefore, the model is more inclined to negative 
prediction to maximize the overall accuracy while reducing the model complexity, but in 
fact, it did not learn the data distribution characteristics.

Model 2 included all the data for training and verification, and the positive data were 
replicated to match the number of negative samples. The performance of Model 2 on the 
validation set is really good (F1-score = 0.99), whereas decreases significantly in the test 
set (F1-score = 0.68), suggesting that it might be due to overfitting. Due to the repeti-
tion of positive data in the training and verification sets, model 2 actually only fitted the 
training set, and the results of the validation set were distorted.

Model 3 downsampled the negative data randomly to balance the data in both the 
training dataset and the validation dataset, which avoided the learning bias of Model 1 
and the repeated training of Model 2. This made it easier for Model 3 to learn the char-
acteristic distribution of the data. Although the results on the validation set and the test 
set were good, unlike Model 1 or Model 2, not all the data were used in Model 3. The 
negative dataset of Model 3 was generated by random sampling, which brings errors and 
uncertainties. The results of different sampling methods were often different, resulting 
in poor stability of the model.

To improve the stability of Model 3, Model 4 adopted ensemble learning based on bag-
ging and used all the data for training and validation, which effectively reduced the pre-
diction variance [29]. The final result was obtained by building multiple submodels. For 
the same case, if most submodels predicted positive data, the likelihood that the data 
were positive was high. Compared with a single submodel, such as Model 3, Model 4 had 
higher stability because all data were used for its training. Although Model 1, Model 2, 
and Model 4 all used all the data for training, Model 4 had significantly better results on 
the test set compared with Model 1 and Model 2, indicating that Model 4 had learned 
the distribution of the MI characteristics by reading the full dataset and had no learn-
ing bias or overfitting. Moreover, different results could be obtained by controlling the 
voting difference to meet the needs of different application scenarios. It can be seen 
from Table 4 that with the increase in the voting difference, the confidence level of the 
positive prediction grew increasingly higher, and the accuracy of the positive prediction 
was also increasingly higher, reflecting that the positive prediction of the model became 
increasingly cautious. In clinical practice, this is called a low misdiagnosis rate. However, 
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sensitivity has become increasingly lower, which is called a high missed diagnosis rate 
in clinical practice. Therefore, many patients with MI are considered non-MI patients. 
Unlike Model 3, Model 4 was not affected by sampling error, so it was more stable and 
flexible. However, due to the different key features of different submodels, the number 
of parallel features required by the ensemble model reached 45. Thus, it is impractical to 
use such a model in medical practice. Moreover, different submodels had different pre-
diction capabilities and were prone to producing noise interference. For these reasons, 
the results of Model 4 on the validation set and test set were of medium quality.

Model 5 solved the noise problem of Model 4 based on a hybrid ensemble learning 
idea of bagging plus boosting. Bagging submodels were generated in parallel with no 
weights, and boosting submodels were generated in serial with weights. Therefore, the 
boosting weights were introduced to bagging submodels, in which the weights were the 
F1 scores of the submodels. The higher the F1 score of the high-quality model is, the 
greater the weight is, while the lower the F1 score of the noisy model is, the smaller the 
weight is. Hence, reasonable results were obtained. Moreover, as in Model 4, the vot-
ing difference could be traversed to observe the changes in the accuracy and sensitivity, 
and thereby, a reasonable model could be flexibly selected. The performance of Model 
5 on the validation set was similar to that of Model 4, but the results on the test set 
were slightly better than those of Model 4, suggesting stronger generalization ability and 
stability.

The bottom-layer algorithm of each model is shown in Fig. 3a–c. Nonlinear models 
such as GBDT and RF were superior to linear models such as LR and SVC. GBDT and 
RF have fewer features, higher accuracy, and higher F1 scores. Therefore, nonlinear 
models may be more suitable for datasets with a high data dimension, a large data vol-
ume, and a difficult-to-find best linear segmentation hyperplane. The GBDT is gener-
ated based on boosting, and the RF is generated based on bagging. GBDT yielded better 
model results than RF, yet the training efficiency of RF was higher. On the same dataset, 
the training speed of RF was approximately 10 times that of GBDT. In this study, we 
chose GBDT as the bottom-layer algorithm and RFE as the top-layer algorithm for opti-
mal feature subset traversal.

Generally, when evaluating a supervised machine learning model, most of them are 
evaluated in a balanced dataset, which are likely to deviate from the real world. For 
example, Model 3 had high accuracy and a high F1 score (0.83) on the test set, yet it did 
not perform well on the Model 5 validation set with extremely imbalanced positive and 
negative data, having an F1 score of only 0.67. This is also the reason why some AI mod-
els do not meet clinical expectations in real-world implementation.

In such situations, it is necessary to have correct expectations and understanding of 
the evaluation index. A value of 0.67 does not mean that it is an invalid model. AI mod-
els pay more attention to the accuracy and sensitivity, corresponding to clinical misdi-
agnosis and missed diagnosis. In the real world, most AI models cannot achieve a low 
misdiagnosis rate or a low missed diagnosis rate at the same time. A low misdiagnosis 
rate of positive cases indicates that the diagnosis is cautious, which will lead to missed 
diagnosis. In contrast, a low missed diagnosis rate of positive cases indicates a rough 
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diagnosis and may raise the misdiagnosis rate. Of these two types of errors, clinical prac-
tice would prefer misdiagnosis over missed diagnosis, i.e., a low missed diagnosis rate.

Although the F1 score of Model 3 in the imbalanced dataset is only 0.67, its sensitiv-
ity is 0.83, specificity is 0.87, positive accuracy rate is 0.3, and negative accuracy rate 
is 0.99. Therefore, although not all positive patients predicted by the model will have 
MI, and maybe only a small portion of them will, the model essentially helps identify 
high-risk patients who need to receive early intervention and close observation. The 
model is suitable for clinical application, so it has high practical application value.

Similarly, the change in the voting difference for Model 5 can achieve dynamic 
adjustment of the misdiagnosis rate and the missed diagnosis rate. For example, in the 
case of a voting difference of 0, the missed diagnoses of positive cases were only 18%, 
which was more consistent with the current clinical scenarios than the 38% missed 
diagnosis of positive cases when the voting difference was 9. Moreover, the accuracy 
and F1 score of the model with a voting difference of 0 on the test set were both 0.84, 
even higher than those of Model 3. Therefore, the model with a voting difference of 0 
is better than the model with a voting difference of 9. It is inadequate to evaluate the 
indices with the accuracy and F1 score alone in some cases. It is necessary to under-
stand the connotation of the indices, the data distribution, and the characteristics of 
the application scenario to select the best model. Considering all these factors, Model 
3 was chosen as the best model for MI risk prediction in this study.

Some common clinical MI risk assessment methods, such as the ITF/IAS guide-
lines, have set a threshold of only 32% predictive power for positive results [30]. These 
scale models can only achieve medium accuracy and have shortcomings such as a lack 
of adjustment parameters, few features, and lack of timeliness. Moreover, the data of 
the scale models are subjective and difficult to obtain. Generally, the scale models are 
only for evaluating high-risk patients and are not applicable to other patients in the 
whole hospital. Since nonhigh-risk patients are not monitored, once MI occurs, it is 
very easy for a poor prognosis and even death to result due to untimely rescue and 
incorrect treatment methods. Currently, for the prevention and treatment of MI, hos-
pitals in China generally do not have a hospital-wide coordination system for the early 
identification or early warning of MI. Although the construction of chest pain centers 
in hospitals has optimized the treatment process of acute MI in hospitals, there is no 
corresponding HIS to support the operation of the model, so the rescue ability is low.

Therefore, AI-based risk prediction models for MI will have great value. With real-
world data, this study used machine learning to mine big data on MI. In the process, 
data imbalance was taken into account, and multiple models were constructed for 
directional optimization. Finally, the MI risk prediction model was applied to the 
HIS system to monitor the risk of MI in all hospitalized patients in real time, thereby 
achieving automatic early warning. The model provided strong information sup-
port for the construction of regional MI prevention and management systems. As a 
result, noncardiovascular physicians could pay more attention to the risk of MI in 
patients, and cardiovascular physicians could have more reference data. Moreover, 
the proposed model could provide decision-making support for primary care physi-
cians to better grasp the characteristics of disease changes and formulate reasonable 
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treatment plans, which will also promote the optimization of medical resource alloca-
tion and the implementation of hierarchical diagnosis and treatment systems.
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